Peer-Reviewed Publications at Dr. Kaiyu Guan's group (Google Scholar): Area 3: Carbon, GHG and crop yield quantification Featured publications:
● Liu, L., Zhou, W., Guan, K.*, Peng, B., Xu, S., Tang, J., Zhu, Q., Till, J., Jia, X., Jiang, C., Wang, S., Qin, Z., Kong, H., Grant, R., Mezbahuddin, S., Kumar, V., and Jin, Z.* (2023) "Knowledge-based artificial intelligence significantly improved agroecosystem carbon cycle quantification". Nature Communications. 15(1), 357. ● Yang, Q., Liu, L., Zhou, J., Ghosh, R.,Peng, B., Guan, K., , Tang, J., Zhou, W., Kumar, V., Jin, Z.* (2023) "A flexible and efficient knowledge-guided machine learning data assimilation (KGML-DA) framework for agroecosystem prediction in the US Midwest". Remote Sensing of Environment. 299, 113880. ● Potash, E., Guan, K., Margenot, A. J., Lee, D., Boe, A., Douglass, M., Heaton, E., Jang, C., Jin, V., Li, N., Mitchell, R., Namoi, N., Schmer, M., Wang, S., Zumpf, C.(2023) "Multi-site evaluation of stratified and balanced sampling of soil organic carbon stocks in agricultural fields". Geoderma. 438, 116587. ● Ye, L., Guan, K., Qin, Z., Wang, S., Zhou, W., Peng, B., Grant, R., Tang, J., Hu, T., Jin, Z., Schaefer, D. (2023) "Improved quantification of cover crop biomass and ecosystem services through remote sensing-based model-data fusion". Environmental Research Letters. ● Guan, K.*, Jin, Z.*, Peng, B.*, Tang, J.*, DeLucia, E.H., West, P., Jiang, C., Wang, S., Kim, T., Zhou, W., Griffis, T., Liu, L., Yang, W.H., Qin, Z., Yang, Q., Margenot, A., Stuchiner, E.R., Kumar, V., Bernacchi, C., Coppess, J., Novick, K.A., Gerber, J., Jahn, M., Khanna, M., Lee, D., Chen, Z., Yang, S. (2023) "A scalable framework for quantifying field-level agricultural carbon outcomes". Earth-Science Reviews.104462. ● Qin, Z.*, Guan, K.*, Zhou, W., Peng, B., Tang, J., Jin, Z., Grant, R., Hu, T., Villamil, M.B., DeLucia, E., Margenot, A., Umakant, M., Chen, Z., and Coppess, J. (2023) "Assessing long-term impacts of cover crops on soil organic carbon in the central U.S. Midwestern agroecosystems". Global Change Biology ● Yang, Y., Liu, L., Zhou, W., Guan, K., Tang, J., Kim, T., Grant, R.F., Peng, B., Zhu, P., Li, Z., Griffis, T.J. and Jin, Z*. (2022) "Distinct driving mechanisms of non-growing season N2O emissions call for spatial-specific mitigation strategies in the US Midwest" Agricultural and Forest Meteorology, 324, p.109108. ● Zhou, W., Kaiyu, G.*, Peng, B., Margenot, A., Lee, D.K., Tang, J., Jin, Z., Grant, R., DeLucia, E., Qin, Z., Wander, M.M., and Sheng, W. (2022). "How does uncertainty of soil organic carbon stock affect the calculation of carbon budgets and soil carbon credits for croplands in the U.S. Midwest?". Geoderma. ● Li, Z.*, Guan, K.*, Zhou, W., Peng, B., Jin, Z., Tang, J., Grant, R.F., Nafziger, E.D., Margenot, A.J., Gentry, L.E., DeLucia, E.H., Yang, W.H., Cai, Y., Qin, Z., Archontoulis, S., Fernández, F.G., Yu, Z., Lee, D.K., and Yang, Y. (2022). "Assessing the impacts of pre-growing-season weather conditions on soil nitrogen dynamics and corn productivity in the US Midwest" Field Crops Research, 284, 108563. ● Liu, L., Xu, S., Tang, J., Guan, K., Griffis, J.T., Erickson, M.D., Frie, A.L., Jia, X., Kim, T., Miller, L.T., Peng, B., Wu, S., Yang, Y., Zhou, W., Kumar, V., and Jin, Z. (2022) "KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments" Geoscientific Model Development 15, no. 7 (2022): 2839-2858. ● Potash, R.*, Guan, K.*, Margenot, A., Lee, D., Delucia, E., Wang, S., and Jang, C. (2022) "How to estimate soil organic carbon stocks of agricultural fields? Perspectives using ex ante evaluation". Geodema, 411, 115693. ● Vardon, D. R., Sherbacow, B. J., Guan, K., Heyne, J. S., and Abdullah, Z., (2022) "Realizing "Net-Zero-Carbon" sustainable aviation fuel". Joule. ● Zhou, W.*,
Guan, K.*, Peng,
B.*, Tang, J., Jin, Z., Jiang, C., Grant R., and
Mezbahuddin S. (2021) "Quantifying carbon
budget, crop yields and their responses to
environmental variability using the
ecosys model for U.S. Midwestern agroecosystems".
Agricultural and Forest
Meteorology, 307, 108521. ● Peng,B.*,
Guan,K.*,
et al. (2020) "Towards a multiscale
crop modelling framework for climate change
adaptation assessment",
Nature
Plants, 6(4), 338-348. ● Peng,B.*,
Guan,K.*,
Chen,M., Lawrence,D.M., Pokhrel,Y., Suyker,A. et al.
(2018) "Improving Maize Growth
Processes in the Community Land Model:
Implementation and Evaluation",
Agricultural
and Forest Meteorology, 250-251, 64-89. ● Sultan,B.*, Guan,K.*, Kouressy,M., Biasutti,M., Piani,C., Hammer,G.L., Mclean,G., and Lobell,D.B. (2014) "Robust features of future climate change impacts on sorghum yields in West Africa", Environmental Research Letters, 9(10). ● Li,Y.*,
Guan,K.*
et al. (2019) "Towards building a
transparent statistical model for improving crop
yield prediction: Modeling
rainfed corn in the U.S.",
Field Crop Research,
234, 55-66.
● Qin,
Z.*, Guan, K*, Zhou,
W.,
Peng,
B.,
Villamil, B., Jin, Z., Tang, J., Grant, R.,
Gentry, L., Margenot, A., Bollero, G. and Li,
Z., (2021)
"Assessing the impacts of cover crops on maize and soybean yield in the U.S. Midwestern agroecosystems".
Field Crops Research.
●
Kimball, B.A. et al. (including Guan, K., Peng, B., Zhou, W.) (2024)
"Simulation of soil temperature under maize: An inter-comparison among 33 maize models.".
Agricultural and Forest Meteorology.
351, 110003.
●
Lee, Y., Khanna, M., Chen, L., Shi, R., Guest, J., BlancBetes, E., Jiang, C., Guan, K., Hudiburg, T., Delucia, E. (2023)
"Quantifying uncertainties in greenhouse gas savings and mitigation costs with cellulosic biofuels".
European Review of Agricultural Economics.
jbad036.
●
Zhang, J., Guan, K.*, Fu, R.*, Peng, B., Zhao, S., Zhuang, Y. (2023)
"Evaluating seasonal climate forecasts from dynamical models over South America".
Journal of Hydrometeorology.
● Zhao, C., Stöckle, C.O.,
Karimi, T.,
Nelson, R.L., Evert, F.V.K., Pronk, A.A., Riddle, A.A.,
Marshall, E.,
Raymundo, R., Li, Y., Guan, K.,
Gustafson, D., Hoogenboom, G., and Asseng, S. (2022) "Potential
benefits of climate change for potatoes in the United
States" Environmental Research Letters. ● Novick, K.A.*, Metzger, S.,
Anderegg, W.R., Barnes, M., Cala, D.S., Guan,
K.,
Hemes, K.S., Hollinger, D.Y., Kumar, J., Litvak, M.,
Lombardozzi, D.,
Normile, C.P., Oikawa, P., Runkle, B.R., Torn, M. and
Wiesner, S.
(2022) "Informing
Nature-based Climate Solutions for the U.S. with the
best-available science". Global
Change Biology. ● Li, R., Lombardozzi, D.,
Shi, M., Frankenberg, C., Parazoo, N.C., Köhler, P., Yi,
K., Guan, K. and Yang, X. (2022). "Representation
of
leaf‐to‐canopy radiative transfer processes improves
simulation of
far‐red solar‐induced chlorophyll fluorescence in the
Community Land
Model version 5". Journal of Advances in Modeling
Earth Systems, p.e2021MS002747. ● Guan,K.*,
Caylor,K.K., Good,S.P.,
Biasutti,M., Medvigy,D., Pan,M., Wood,E.F. and SATO,H.
(2014) "Continental-scale
impacts of intra-seasonal rainfall variability on
simulated ecosystem responses
in Africa", Biogeosciences, 11,
6939-6954. ● Rastogi,
B., Miller, J., Trudeau, M., Andrews, A., Hu, L.,
Mountain, M., Nehrkorn, T., Mund, J., Guan,
K., and Alden, C. (2021) "Evaluating consistency
between total column CO2 retrievals from OCO-2 and
the in-situ network over
North America: Implications for carbon flux
estimation". Atmospheric
Chemistry and Physics. ● Kim,
T., Jin, Z., Smith, T., Yang, Y., Yang, Y., Liu, L.,
Phillips, K., Guan, K.,
Hunter, L., and Zhou., W.
(2021) "A metamodeling approach
to identifying nitrogen loss hotspots and mitigation
potential in the US Corn
Belt". Environmental Research Letters.
● Xu,
T., Guan, K., Peng,
B. and Zhao, L., (2021) "Machine Learning-based
Modeling of Spatio-temporally Varying Responses of
Rainfed Corn Yield to
Climate, Soil and Management in the U.S. Corn Belt",
Frontiers in Artificial
Intelligence. ● Benes,B.,
Guan,K.,
Lang,M., Long,S., Lynch,J., Marshall-Colon,A., Peng,B.,
Schnable,J., Sweetlove,L. and Turk,M. (2020) "Multiscale
computational models can guide experimentation and
targeted measurements for
crop improvement",
The Plant Journal. ● Cheng,Y.
Huang,M., Chen,M., Guan,K.,
Bernacchi,C., Peng,B.,
and Tan,Z. (2020)
"Parameterizing
Perennial Bioenergy Crops in Version 5 of the
Community Land Model Based on
Site-Level Observations in the Central Midwestern
United States",
Journal of Advances for Modeling the Earth System,
12, e2019MS001719.
● Guan,K.,
Sultan,B., Biasutti,M.,
and Lobell,D.B. (2015) "What aspects of future
rainfall changes matter for crop yields in West
Africa", Geophysical Research Letters,
42(19). ● Alden,C.B., Miller,J.B.,
Gatti,L.V., Gloor,M.M., Guan,K.,
..., and
Diffenbaugh,N.S. (2016) "Regional atmospheric
CO2 inversion reveals seasonal and geographic
differences in heat and drought impacts
in the Amazon", Global Change
Biology,
22,
3427-3443.
|