Peer-Reviewed Publications at Dr. Kaiyu Guan's group (Google Scholar): Area 2: Hyperspectral sensing and AI applications in ground and airborne platforms Featured publications: ● Wu, G., Guan, K., Kimm, H., Miao, G., Yang, X., Jiang, C. (2024) "Ground far-red sun-induced chlorophyll fluorescence and vegetation indices in the US Midwestern agroecosystems". Scientific Data. 11(1), 228. ● Wu, G., Guan, K.*, Ainsworth, E.A.*, Martin, D.G., Kimm, H., Yang, X. (2023) "Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean". Journal of Experimental Botany ● Wu, G.*, Guan, K.*, Jiang, C., Kimm, H., Miao, G., Yang, X., Bernacchi, C.J., Sun, X., Suyker, A.E., Moore, C.E. (2023) "Can upscaling ground nadir SIF to eddy covariance footprint improve the relationship between SIF and GPP in croplands?". Agricultural and Forest Meteorology, 338, 109532. ● Wang, S.*, Guan, K.*, Zhang, C., Jiang, C., Zhou, Q., Li, K., Qin, Z., Ainsworth, E.A., Margenot, A., and Herzberger, L. (2022) "Airborne hyperspectral imaging of cover crops through radiative transfer process-guided machine learning". Remote Sensing of Environment. ● Zhou, Q., Wang, S., Liu, N., Townsend, P., Jiang, C., Peng, B., Verhoef, W. and Guan, K.* (2022) "Operational atmospheric correction of airborne hyperspectral imaging spectroscopy: algorithm evaluation, key parameter analysis, and machine learning emulators". ISPRS Journal of Photogrammetry and Remote Sensing. ● Wang, S.*, Guan, K.*, Zhang, C., Zhou, Q., Wang, S., Wu, X., Jiang, C., Peng, B., Mei, W., Li, K., Li, Z., Yang, Y., Zhou, W. and Ma, Z. (2022) "Cross-scale sensing of field-level crop residue fraction and tillage intensity: integrating field photos, airborne hyperspectral imaging, and satellite data". Remote Sensing of Environment. ● Wu, G.*, Guan, K.*, Jiang, C., Kimm, H., Miao, G., Bernacchi, K., Moore, C.E., Ainsworth, E.A., Yang, X., Berry, J.A., Frankenberg, C., and Min, C,. (2022). "Attributing differences of solar-induced chlorophyll fluorescence (SIF)-gross primary production (GPP) relationships between two C4 crops: corn and miscanthus" Agricultural and Forest Meteorology, 323, 109046. ● Wu, G., Jiang, C.*, Kimm, H., Wang, S., Bernacchi, K., Moore, C.E., Suyker, A., Yang, X., Magney, T., Frankenberg, C., Ryu, Y., Dechant, B., and Guan, K.* (2022). "Difference in seasonal peak timing of soybean SIF and GPP explained by canopy structure and chlorophyll content" Remote Sensing of Environment, 279, 113104. ● Wang, S.*, Guan, K.*, Zhang, C., Lee, D., Margenot, A, J., Ge, Y., Peng, J., Zhou, W., Zhou, Q., and Huang, Y. (2022) "Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing". Remote Sensing of Environment, 271, p.112914. ● Wang, S.*, Guan, K.*, Wang, Z., Ainsworth, E. A., Zheng, T., Townsend, P. A., Liu, N., Nafziger, E., MIchael, M. D., Li, K., Wu G., and Jiang, C. (2021) "Airborne
hyperspectral imaging of nitrogen deficiency on crop traits and yield
of maize by machine learning and radiative transfer modeling". International Journal of Applied Earth Observation and Geoinformation. ● Kimm, H.*, Guan, K., Jiang, C., Miao, G., Wu, G., Suyker, A. E., Ainsworth, E. A., Bernacchi, C. J., Montes, C. M., Berry, J. A., Yang, X., Frankenberg, C., Chen, M., and Köhler, P. (2021) "A physiological signal derived from sun-induced chlorophyll fluorescence quantifies crop physiological response to environmental stresses in the U.S. Corn Belt". Environmental Research Letters. ● Wang, S.*, Guan, K.*, Zhou, W., Ainsworth, E.A., Zheng, T., Townsend,
P.A., Li, K., Moller, C., Wu, G., and Jiang,
C. (2020) “Unique contributions of
chlorophyll and nitrogen to predict crop photosynthetic capacity from leaf
spectroscopy”, Journal of Experimental Botany. ● Kimm, H.*, Guan, K.*,
Burroughs, C., Peng, B., Ainsworth, E., Bernacchi, C., Moore, C.,
Kumagai, E., Yang, X., Berry, J. and Wu, G., (2021) “Quantifying
high-temperature stress on soybean canopy photosynthesis: the unique role of
sun-induced chlorophyll fluorescence”, Global Change Biology. ● Wu,G., Guan,K.*,
Jiang,C.*,
Peng,B.,
Kimm,H.,
Chen,M., Yang,X., Wang,S., Suyker.A.E.,Bernacchi,C. and Moore, C.E. (2019)
"Radiance-based NIRv as
a proxy for GPP of corn and soybean", Environmental Research Letters,
15. ● Miao,G.*, Guan,K.*,
Yang,Xi, et al. (2018) "Sun-induced chlorophyll
fluorescence, photosynthesis, and light use efficiency of a soybean field from
seasonally continuous measurements", Journal of Geophysical
Research-Biogeosciences, 123, 610-623. ● Zhai, A.J., Shen, Y., Guan, K., Chen, E., Wang, G., Wang, X., Wang, S., Wang S. (2024) "Physical Property Understanding from Language-Embedded Feature Fields". CVPR 2024. ● Wu, J., He, R.J., Elizabeth, A.A., Wang, S., and Guan, K. (2022) "Distribution-Informed Neural Networks for Domain Adaptation Regression". NeurIPS 2022 ● Kumagai, E., Burroughs, C., Pederson, T., Montes, C., Peng,
B., Kimm, H., Guan,
K., Ainsworth, E., and Bernacchi,. C. (2021) "Predicting biochemical
acclimation of leaf photosynthesis in soybean under in-field canopy warming
using hyperspectral reflectance". Plant, Cell & Environment ● Meacham-Hensold,K., Fu,P., Wu,J., Serbin,S., Montes,C.M.,
Ainsworth,E. Guan,K.,
Dracup,E., Pederson,T. and Bernacchi C. (2020) "Plot level rapid
screening for photosynthetic parameters using proximal hyperspectral imaging", Journal
of Experimental Botany, 71(7), 2312-2328. ● Miao,G.*, Guan,K.*,
Suyker,A.E., Yang,X., Arkebauer,T.J., Walter-Shea,E.A., Kimm,H.,
Hmimina,G.Y., Gamon,J.A., Franz,T.E., Frankenberg,C., Berry,J.A., and Wu,G.
(2020) "Varying contributions
of drivers to the relationship between canopy photosynthesis and far-red
sun-induced fluorescence for two maize sites at different temporal scales", Journal
of Geophysical Research - Biogeosciences, 125, e2019JG005051. ● Fu,P., Meacham,K., Guan,K.,
Jin,W., and Bernacchi, C. (2020) "Estimating
photosynthetic traits from reflectance spectra: A synthesis of spectral
indices, numerical inversion, and partial least square regression", Plant,
Cell & Environment, 00, 1-18. ● Cai,Y., Guan,K.*,
Nafziger,E., Chowdhary,G., Peng,B., Jin,Z., Wang,SW, and Wang,Sibo (2019)
"Detecting In-Season Crop Nitrogen Stress
of Corn for Field Trials Using UAV- and CubeSat-Based Multispectral Sensing", IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
12(12), 5153-5166. ● Fu,P., Meacham-Hensold,K., Guan,K., and Bernacchi,C. (2019), "Hyperspectral Leaf
Reflectance as Proxy for Photosynthetic Capacities: An Ensemble Approach Based
on Multiple Machine Learning Algorithms", Frontiers in Plant Science,
10. ● Meacham-Hensold,K., Montes,C.M., Wu,J., Guan,K., Ainsworth,E.A., Pederson,T., Moore,C.E.,
Brown,K.L., Raines,C., and Bernacchi,C. (2019) "High-throughput field
phenotyping using hyperspectral reflectance and partial least squares
regression (PLSR) reveals genetic modifications to photosynthetic capacity", Remote
Sensing of Environment, 231. ● Xia,Y., Ugarte,C.M., Pentrak,M., Guan,K., and Wander,M.(2018) "Developing Near- and
Mid-Infrared Spectroscopy Analysis Methods for Rapid Assessment of Soil Quality
in Illinois", Soil Science Society of America Journal,
82(6), 1415-1427. ● Yang,X., Shi,H., Stovall,A., Guan,K., Miao,G., et al. (2018) "FluoSpec2 - An
automated field spectroscopy system to monitor canopy solar-induced
fluorescence", Sensors, 18. |