Peer-Reviewed Publications at Dr. Kaiyu Guan's group (Google Scholar):

Area 1: Satellite technology innovation and applications                                                                                                                                   

RETURN

Featured Publications:

   Zhou, Q., Guan, K.*, Wang, S.*, Hipple, J., Chen, Z. (2024) "From satellite-based phenological metrics to crop planting dates: Deriving field-level planting dates for corn and soybean in the US Midwest". ISPRS Journal of Photogrammetry and Remote Sensing. 216, 259-273.

   Zhou, J., Yang, Q., Liu, L., Kang, Y., Jia, X., Chen, M., Ghosh, R., Xu, S., Jiang, C., Guan, K. , Kumar, V., Jin, Z.* (2023) "A deep transfer learning framework for mapping high spatiotemporal resolution LAI". ISPRS Journal of Photogrammetry and Remote Sensing. 206, 30-48.

   Chongya Jiang*, Guan, K.*, Yizhi Huang, Maxwell Jong (2023) "A vehicle imaging approach to acquire ground truth data for upscaling to satelite data: A case study for estimationg harvesting dates". Remote Sensing of Environment, 300, 113894.

  Wang, S.*, Guan, K.*, Zhang, C., Zhou, Q., Wang, S., Wu, X., Jiang, C., Peng, B., Mei, W., Li, K., Li, Z., Yang, Y., Zhou, W. and Ma, Z. (2022) "Cross-scale sensing of field-level crop residue fraction and tillage intensity: integrating field photos, airborne hyperspectral imaging, and satellite data" Remote Sensing of Environment.

  Zhou, Q., Guan, K.*, Wang, S.*, Jiang, C., Huang, Y., Peng, B., Chen, Z., Wang, S., Hipple, J., Schaefer, D., Qin, Z., Stroebel, S., Coppess, J., Khanna, M., and Cai, Y. (2022) "Recent rapid increase of cover crop adoption across the US Midwest detected by fusing multi‐source satellite data" Geophysical Research Letters, p.e2022GL100249.

      Jong, M., Guan, K.*, Wang, S., Huang, Y., and Peng, B. (2022) "Improving field boundary delineation in ResUnets via adversarial deep learning" International Journal of Applied Earth Observation and Geoinformation, 112, 102877.

      Cai,Y., Guan,K.*, Lobell,D.B., Potgieter,A. et al. (2019) "Integrating satellite and climate data to predict wheat yield in Australia using machine learning approachesAgricultural and Forest Meteorology, 274, 144-159.

       Peng, B.*, Guan, K.*, Pan, M., and Li, Y. (2018) "Benefits of seasonal climate prediction and satellite data for forecasting US maize yield", Geophysical Research Letters, 45.

       Peng, B.*, Guan, K.*, Zhou, W., Jiang, C., Frankenberg, C., Sun, Y., He, L., and Kohler, P. (2020) "Assessing the benefit of satellite-based Solar-Induced Chlorophyll Fluorescence in crop yield prediction", International Journal of Applied Earth Observation and Geoinformation, 90, 102126.

       Guan,K.*, Lobell,D.B., Berry,J.,  Joiner,J., Guanter,L., Zhang,Y., and Badgley,G. (2015) "Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence", Global Change Biology, 22(2).

       Guan,K.*, Wu,J., Kimball,J., Anderson,M., Li,B., and Lobell,D.B. (2017) "The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields", Remote Sensing of Environment., 199, 333-349.

       Luo,Y., Guan,K.*, and Peng,J.* (2018) "STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product", Remote Sensing of Environment, 214, 87-99. 

       Jiang, C.*, Guan, K.*, Wu, G., Peng, B., and Wang, S. (2021) “A daily, 250 m, and real-time gross primary productivity product (2000–present) covering the Contiguous United States”, Earth System Science Data, 13, 281-298, 2021.

       Kimm,H.*, Guan,K.*, Jiang,C., Peng,B., Gentry,L.F., Wilkin,S.C., Wang,S., Cai,Y., Bernacchi,C.J., Peng,J., and Luo,Y. (2020) "Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data", Remote Sensing of Environment, 239.

       Jiang, C.*, Guan, K.*, Khanna, M.*, Chen, L. and Peng, J. (2021) “Assessing marginal land availability based on land use change information in the Contiguous United States”. Environmental Science & Technology.

       Cai,Y., Guan,K.*, Peng,J.*, Wang,S., Seifert,C., Wardlow,B., and Li,Z. (2018) "A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach", Remote Sensing of Environment,210, 35-47.

Other Publications:

  Cheng, T., Ma, W., Guan, K.*, Torralba, A., Wang, S. (2023) "Structure from Duplicates: Neural Inverse Graphics from a Single Image". NeurlPS 2023.

      Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migliavacca, M., Zhang, Y., Tagliabue, G., Guan, K., Rossini, M., Goulas, Y., Frankenberg, C., and Berry, J. A. (2021) "NIRvP: a robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales". Remote Sensing of Environment.

       Li, K., Guan, K.*, Jiang, C.*, Wang, S., Peng, B., and Cai, Y. (2021) "Evaluation of four new land surface temperature (LST) products in the U.S. Corn Belt: ECOSTRESS, GOES-R, Landsat, and Sentinel-3". IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

       Lin, C., Jin, Z., Mulla, D., Ghosh, R., Guan, K., Kumar, V., and Cai, Y., (2021) "Toward Large-Scale Mapping of Tree Crops with High-Resolution Satellite Imagery and Deep Learning Algorithms: A Case Study of Olive Orchards in Morocco". Remote Sensing, 13(9), 1740.

       Hao, D., Asrar, R. G., Zeng, Y., Yang, X., Li, X., Xiao, J., Guan, K., Wen, J., Xiao, Q., Berry A., J., and Chen, M., (2021) “Potential of hotspot solar-induced chlorophyll fluorescence for better tracking terrestrial photosynthesis”, Global Change Biology.

       Kong, J., Ryu, Y., Huang, Y., Dechant, B., Houborg, R., Guan, K., and Zhu, X. (2021). “Evaluation of four image fusion NDVI products against in-situ spectral-measurements over a heterogeneous rice paddy landscape",Agricultural and Forest Meteorology, 297, 108255.

       Luo, Y., Guan, K.*, Peng, J., Wang, S., and Huang, Y. (2020) “Stair 2.0: A Generic and Automatic Algorithm to Fuse Modis, Landsat, and Sentinel-2 to Generate 10m, Daily, and Cloud-/Gap-Free Surface Reflectance Product”, Remote Sensing, 12(19), 3209.

       Paul, R. F., Cai, Y., Peng, B., Yang, W. H., Guan, K., & DeLucia, E. H., (2020) "Spatiotemporal Derivation of Intermittent Ponding in a Maize–Soybean Landscape from Planet Labs CubeSat Images", Remote Sensing, 12(12), 1942.

       Franz,E.T., Pokal,S., Gibson,P.J., Zhou,Y., Gholizadeh,H., TenorioA.F., Rudnick,D.,Heeren,D., McCabe,M., Ziliani,M., Jin,Z., Guan,K., Pan,M, Gates,J., and Wardlow,B., (2020) "The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield", Field Crops Research, 252.

       He,M., Kimball,J., Yi,Y., Running,S., Guan,K., Jencso,K., Maxwell,B., and Maneta,M. (2019), "Impacts of the 2017 flash drought in the US Northern Plains informed by satellite-based evapotranspiration and solar-induced fluorescence", Environmental Research Letters, 14.

       He,M., Kimball,J.S., Yi,Y., Mu,Q., Running,S., Guan,K., Maneta,M., Moreno,A., and Wu,X. (2019) "Satellite data-driven modeling of field scale evapotranspiration in croplands using the MOD16 algorithm framework ", Remote Sensing of Environment, 230.

       Xu,Z., Guan,K., Casler,N., Peng,B., and Wang,S. (2018) "A 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery", ISPRS Journal of Photogrammetry and Remote Sensing, 114, 423-434.

       Guan,K.*, Li,Z., Rao,N., Feng,G, etc (2018) "Mapping Paddy Rice Area and Yields Over Thai Binh Province in Viet Nam From MODIS, Landsat, and ALOS-2/PALSAR-2", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 2238-2252.

       Song,L., Guanter,L., Guan,K., et al. (2018) "Satellite chlorophyll fluorescence captures heat stress for the winter wheat in the Indo-Gangetic Plains, India", Global Change Biology, 24, 4023- 4037.

       Urban,D.*, Guan,K.*, and Jain,M. (2018) "Estimating sowing dates from satellite data over the U.S. Midwest: a comparison of multiple sensors and metrics", Remote Sensing of Environment, 211, 400-412.

       Zhang,Y., Guanter,L., Joiner,J., Lian,S., and Guan,K. (2018) "Spatially-explicit monitoring of crop photosynthetic capacity through space-based chlorophyll fluorescence data", Remote Sensing of Environment, 210, 362-374.

       Madani, N., Kimball,J., Jones,L., Parazoo,N.C., and Guan,K. (2017) "Global analysis of bioclimatic controls on ecosystem productivity using satellite observations of solar-induced chlorophyll fluorescence", Remote Sensing, 9(6), 530.

       He,M., Kimball,J.S., Running,S, Ballantyne,A., Guan,K., and Heummrich,F. (2016) "Satellite detection of soil moisture related impacts on ecosystem productivity using the MODIS-based Photochemical Reflectance Index", Remote Sensing of Environment, 186, 173-183.

       Guan,K.*, Medvigy,D., Wood,E.F. , Caylor,K.K. ,Li,S. and Jeong,S.J. (2014) "Deriving vegetation phenological time and trajectory information over Africa using SEVIRI daily LAI", IEEE transactions on Geoscience and Remote Sensing, 53(2),1113-1130.

       Gao,Y., Wang,S., Guan,K., Wolanin,A., You,L., Ju,W., and Zhang,Y. (2020) "The ability of sun-induced chlorophyll fluorescence from OCO-2 and MODIS-EVI to monitor spatial variations of soybean and maize yields in the Midwestern USA", Remote Sensing, 12(7), 1111.

       He,L.,Magney,T.,Dutta,D.,Yin,Y.,Kohler,P.,Grossmann,K.,Stutz,J.,Dold,C.,Hatfield,J., Guan,K., Peng,B., and Frankenberg,C. (2020) "From the ground to space: Using solar-induced fluorescence (SIF) to estimate crop productivity", Geophysical Research Letters, 47(7), e2020GL087474.

       Becker-Reshef, I. et al. (including Guan, K.) (2022). "The NASA Harvest Program on Agriculture and Food Security. In: Vadrevu, K.P., Le Toan, T., Ray, S.S., Justice, C. (eds) Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries". Springer, Cham. 

       Wang,C.*, Guan,K.*, Peng,B.,Chen,M., Jiang,C.,Zeng,Y., Wu,G., Wang,S., Wu,J., Yang,X., Frankenberg,C., Kohler,P., Berry,J., Bernacchi,C., Zhu,K, Alden,C., and Miao,G. (2020) "Satellite footprint data from OCO-2 and TROPOMI reveal significant spatio-temporal and inter-vegetation type variabilities of solar-induced fluorescence yield in the U.S. Midwest", Remote Sensing of Environment, 241.