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Extra-curricular Activities –
Hiking, Horse-back Riding, and
Mountain Climbing in the Teton
Mountains on the Border between
Wyoming and Idaho.



The Grand Teton





The Grand Teton Summit



My Youngest Daughter



Provo, Utah

Mt. 
Timpo-
nogas in 
Back-
ground

Received B.S. in Chemistry



Received M.S. in Soil Chemistry



Received Ph.D. in Physical Chemistry of Clays



Brief Biographical SketchBrief Biographical Sketch

• Native of Rexburg, Idaho
• Father was a professor of agriculture at Ricks 

College (now BYU-Idaho)
• Grew up on a dairy
• Attended college in Idaho, Utah, and Indiana
• Came to UIUC as assistant professor in 1976





The University of Illinois



Raising a Family: 6 children; 9 grandchildren
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UIUC Classic Architecture



Altgeld Hall (Mathematics)



Morrow Plots – The U.S.’s Oldest Experimental Field
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• Overview of Iron Reduction in Clays
• Effects of Reduction on Clay-water & -organic 

Interactions
• Application of Redox-treated Clays for the 

Remediation of Pesticide Toxicity
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A Single Clay Layer
(2 μm wide x 0.00096 μm thick)

Drawing by Laibin Yan
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The Aluminum Octahedron

Al 3+Al3+

The AlThe Al3+3+ can be partially or completelycan be partially or completely
replaced by Mgreplaced by Mg2+2+, Fe, Fe3+3+, or Fe, or Fe2+2+
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Octahedra Join At Edges

Octahedral Sheet
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Courtesy Pascal Boivin and Fabienne Favre

Smectite from Senegalese Soil

Ferruginous Smectite SWa-1

Oxidized Dithionite
Reduced
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REDUCING AGENTS

• Dithionite
• Hydrazine
• Sulfide
• Hydrogen Gas
• Hydroquinone
• Nitrobenzene
• Tetraphenylboron
• Bacteria



Microorganisms Used (FeRB)

Indigenous Unclassified from SWa-1, paddy soil, 
upland soil, and subsurface sediments

Pseudomonas fluroescens, aureofaciens, putida
Shewanella oneidensis (putrefaciens) MR-1 & CN32, 

alga BrY
δ-Proteobacteria Geobacteraceae
Low-G+C gram-
positive bacteria

Bacillus, Desulfitobacterium, 
Desulfotomaculum

Others List is open for expansion



Smectite Reduction by Bacteria*Smectite Reduction by Bacteria*

* Schewanella putrefaciens (strain MR-1) (from Wu and Kostka)
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iron reductioniron reduction
••The clay mineral layer exhibits frustrated antiThe clay mineral layer exhibits frustrated anti--
ferromagnetic behavior in the oxidized state and ferromagnetic behavior in the oxidized state and 
ferromagnetism in the reduced stateferromagnetism in the reduced state
••Iron reduction decreases specific surface area and clay Iron reduction decreases specific surface area and clay 
swelling in waterswelling in water

Summary of Observations



••MMössbauerssbauer spectra reveal that the pathway for electron spectra reveal that the pathway for electron 
transfer into the clay structure upon chemical reduction may transfer into the clay structure upon chemical reduction may 
be different from bacterial reductionbe different from bacterial reduction

Summary of Observations



••MMössbauerssbauer spectra reveal that the pathway for electron spectra reveal that the pathway for electron 
transfer into the clay structure upon chemical reduction may transfer into the clay structure upon chemical reduction may 
be different from bacterial reductionbe different from bacterial reduction
••Pesticide degradation can be greatly affected by exposure to Pesticide degradation can be greatly affected by exposure to 
reducedreduced--clay surfacesclay surfaces

Summary of Observations



••MMössbauerssbauer spectra reveal that the pathway for electron spectra reveal that the pathway for electron 
transfer into the clay structure upon chemical reduction may transfer into the clay structure upon chemical reduction may 
be different from bacterial reductionbe different from bacterial reduction
••Pesticide degradation can be greatly affected by exposure to Pesticide degradation can be greatly affected by exposure to 
reducedreduced--clay surfacesclay surfaces
••The structure and stability of reduced clays are governed byThe structure and stability of reduced clays are governed by 
the extent of reduction, the reducing agent, and the presence the extent of reduction, the reducing agent, and the presence 
of organic acidsof organic acids
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••RedoxRedox--modified clay minerals have been characterized by:modified clay minerals have been characterized by:
MMössbauerssbauer spectroscopyspectroscopy
FTIRFTIR
EXAFS and Polarized EXAFSEXAFS and Polarized EXAFS
UVUV--Visible spectroscopyVisible spectroscopy
Magnetic susceptibilityMagnetic susceptibility
LL--edge xedge x--ray absorption spectroscopyray absorption spectroscopy
XX--ray photoelectron spectroscopyray photoelectron spectroscopy
HighHigh--resolution transmission electron microscopyresolution transmission electron microscopy

Summary of Observations
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Potassium Fixation in Smectite

Fully Expanded
Inter-layers

Collapsed Inter-layers

Fe Reduction
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Acre 6-in of Soil             =        2 million lbs.
Medium Texture Soil      =        15% Clay
K fixation @ 20% Fe(II)  =   0.0047 lbs K2O/lb. clay

0.0047  lbs K2O    x   10 lbs. Clay    x    2 x 106 lbs. Soil
lb. clay            100 lbs soil             Acre 6-in

Total Potential Fixation = 940 lbs K2O/Acre 6-in

Potential for Potassium FixationPotential for Potassium Fixation
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Oxidized SWaOxidized SWa--11 Reduced SWaReduced SWa--11

Na+

TMPA+



TMPA C Content in Unaltered SWaTMPA C Content in Unaltered SWa--11

Mole Fraction of TMPA in Solution
0.4 0.6 0.8 1.0

E
xc

ha
ng

ed
 T

M
P

A
 C

 C
on

te
nt

74

76

78

80

82

84

86

88

74

76

78

80

82

84

86

88



Effect of TMPA on Fixed K in Reduced SWaEffect of TMPA on Fixed K in Reduced SWa--11
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Pentachloroethane Transformation



Reductive dechlorination

Dehydrochlorination

Pentachloroethane Trichloroethene

+ 2Cl-
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Pentachloroethane Tetrachloroethene

+ 2e-

Figure drawn by Javiera Cervini-Silva



From Cervini-Silva et al., 2000, Clays Clay Miner. 48:132-138
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From Cervini-Silva et al., 2000, Clays Clay Miner. 48:132-138
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From Cervini-Silva et al., 2000, Clays Clay Miner. 48:132-138
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Atrazine Transformation
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From Xu et al., 2001, Environ. Toxicol. Chem (in press)
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From Xu et al., 2001, Environ. Toxicol. Chem (in press)

AtrazineAtrazine Reacted with SWaReacted with SWa--11
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From Xu et al., 2001, Environ. Toxicol. Chem (in press)

AtrazineAtrazine Reacted with SWaReacted with SWa--11
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From Xu et al., 2001, Environ. Toxicol. Chem (in press)

AtrazineAtrazine Reacted with SWaReacted with SWa--11
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HPLC of 14C-Atrazine w ith Oxidized SW a-1
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HPLC of 14C-Atrazine w ith Reduced SW a-1
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Alachlor Transformation
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Structure of Structure of AlachlorAlachlor



From Xu et al., 2001, Environ. Toxicol. Chem (in press)
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From Xu et al., 2001, Environ. Toxicol. Chem (in press)

AlachlorAlachlor Reacted with SWaReacted with SWa--11
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From Xu et al., 2001, Environ. Toxicol. Chem (in press)

AlachlorAlachlor Reacted with SWaReacted with SWa--11
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From Xu et al., 2001, Environ. Toxicol. Chem (in press)

AlachlorAlachlor Reacted with SWaReacted with SWa--11

Equilibrium Solution Concentration (mg/L)
0.5 1.0 1.5 2.0A

la
ch

lo
r &

 P
ro

du
ct

s 
R

et
ai

ne
d 

by
 C

la
y 

(m
g/

g)

0.00

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

0.08Microbially Reduced
Reoxidized



H P L C  o f A la c h lo r  w ith  O x id iz e d  S W a -1

E lu tio n  T im e  (m in )
4 6 8 1 0 1 2 1 4

R
el

at
iv

e 
In

te
ns

ity

0

2

4

6

8

0

2

4

6

8

(from Xu, 1998)



HPLC of Alachlor in Reduced SW a-1 
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Trifluralin Transformation
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Structure of Structure of TrifluralinTrifluralin



From Tor et al., 2000, Environ. Sci. Technol. 34:3148-3152
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Chloropicrin Transformation
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Chloropicrin Reaction ProductsChloropicrin Reaction Products
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Chloropicrin Reacted with SWaChloropicrin Reacted with SWa--11
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CONCLUSIONSCONCLUSIONS

• Reduction of structural Fe activates smectite
surfaces relative to organic compound 
transformation.

• Degradation pathways include base-catalyzed 
eliminations and reductive dehalogenation.

• Reduced smectite surfaces also contain significant 
acidic sites due to increased population of 
exchangeable cations. 



Oxamyl Transformation



Structure of Structure of OxamylOxamyl
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OxamylOxamyl Reacted with Reacted with RedoxRedox--Modified SWaModified SWa--11
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OxamylOxamyl Reacted with Reacted with RedoxRedox--Modified SWaModified SWa--11
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OxamylOxamyl Reacted with Reacted with RedoxRedox--Modified SWaModified SWa--11
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SummarySummary
•• Oxidized clay: no change in clay pH; no Oxidized clay: no change in clay pH; no oxamyloxamyl

degradation at low pH (3.5); some at neutral pH (7.0).degradation at low pH (3.5); some at neutral pH (7.0).
•• Chemically reduced clay:Chemically reduced clay:

–– Clay pH increases as structural Fe(II) increases;Clay pH increases as structural Fe(II) increases;
–– OxamylOxamyl is partially degraded into OO (mostly) and DMCF is partially degraded into OO (mostly) and DMCF 

at low pH;at low pH;
–– OxamylOxamyl degrades completely into OO at neutral pH;degrades completely into OO at neutral pH;



ConclusionsConclusions

•• Oxamyl degrades rapidly in the presence of Oxamyl degrades rapidly in the presence of 
reduced smectite.reduced smectite.

•• Oxamyl oxime (Oxamyl oxime (hydrolyishydrolyis) product dominates in ) product dominates in 
reduced SWareduced SWa--1 at higher pHs.1 at higher pHs.

•• DMCF (reduction) product occurs only at low DMCF (reduction) product occurs only at low 
pH.pH.



Mitigating Pesticide ToxicityMitigating Pesticide Toxicity

Objective:

Determine ways to mitigate the human 
toxicity of pesticides in the environment
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Studied Four Pesticides:

Alachlor, 2,4-D, Dicamba, Oxamyl

Measured:

Cytotoxicity & Genotoxicity

Mitigating Pesticide ToxicityMitigating Pesticide Toxicity



Cells Representing Human Cells:

Chinese Hamster Ovary Cells (CHO)

Clay Used Was Iron Smectite

Common in Soils; Bacteria Change Iron 
From +3 to +2; Changes Chemistry

Mitigating Pesticide ToxicityMitigating Pesticide Toxicity



Mitigating Pesticide ToxicityMitigating Pesticide Toxicity

Objective:

Determine ways to mitigate the human 
toxicity of pesticides in the environment
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CytotoxicityCytotoxicity MethodMethod

• Solutions containing pesticide were separated from the 
solid clay fraction by centrifugation.



CytotoxicityCytotoxicity MethodMethod

• Solutions containing pesticide were separated from the 
solid clay fraction by centrifugation.

• In order to avoid collateral damage to CHO cells due to 
ancillary reactions, solutions were filter sterilized and the 
pH and ionic strength were carefully controlled under an 
inert atmosphere.



CytotoxicityCytotoxicity MethodMethod

• Solutions containing pesticide were separated from the 
solid clay fraction by centrifugation.

• In order to avoid collatoral damage to CHO cells due to 
ancillary reactions, solutions were filter sterilized and the 
pH and ionic strength were carefully controlled under an 
inert atmosphere.

• The fraction of surviving cells after treatment with 
pesticide solutions was measured by live-cell density, using 
visible absorption spectroscopy at 450 nm after live-cell 
fixation with crystal violet.



Alachlor Transformation
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Alachlor
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Conclusions Conclusions ---- AlachlorAlachlor

• Alachlor evokes a cytotoxic response in the CHO cells.
• Prior reaction of alachlor with oxidized (unaltered) 

smectite clay has no effect on cytotoxicity of the 
pesticide.

• Reaction of alachlor with reduced smectite clay has a 
small, but statistically significant effect on decreasing 
its cytotoxicity.



Oxamyl Transformation



Oxamyl (µM)
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Oxamyl (µM)
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Oxamyl (µM)
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Conclusions Conclusions ---- OxamylOxamyl

• Oxamyl evokes a cytotoxic response in the CHO cells.
• Prior reaction of oxamyl with oxidized (unaltered) 

smectite clay has no effect on cytotoxicity of the 
pesticide.

• Reaction of oxamyl with reduced smectite clay 
mitigates a large fraction of its cytotoxicity.



2,4-D Transformation
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Conclusions Conclusions –– 2,42,4--DD

• 2,4-D evokes a cytotoxic response in the CHO cells.
• Prior reaction of 2,4-D with either oxidized (unaltered) 

or reduced smectite clay has no effect on cytotoxicity of 
this pesticide.
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Conclusions Conclusions ---- DicambaDicamba

• Dicamba evokes a cytotoxic response in the CHO cells.
• Prior reaction of dicamba with oxidized (unaltered) 

smectite clay has little effect on cytotoxicity of the 
pesticide.

• Reaction of dicamba with reduced smectite clay 
actually enhances its cytotoxicity to CHO cells.
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GenotoxicityGenotoxicity MethodMethod

• DNA was stained with ethidium bromide then submitted to 
Single-cell Gel Electrophoresis.

• A fluorescence microscope was used to digitize and record 
images of DNA in a CCD camera.

• Damaged DNA migrated away from the nucleus, creating a 
tail in the medium – like a comet.

• Extent of damage was recorded as % tail of a concurrent 
positive control using (EMS).

• Level of exposure to pesticide was in the range where 
cytotoxicity was low.
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Conclusions Conclusions ---- OxamylOxamyl

• To our knowledge this is the first report that the 
pesticide oxamyl manifests genotoxic properties.

• Reaction of oxamyl with oxidized (unaltered) 
smectite clay has no effect on genotoxicity of the 
pesticide.

• Reaction of oxamyl with reduced smectite clay 
mitigates a large fraction of its genotoxicity.
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Conclusions Conclusions ---- 2,42,4--DD

• 2,4-D genotoxicity is less than oxamyl and about the 
same as dicamba.

• Its genotoxicity is unaffected by either oxidized 
(unaltered) or reduced smectite clay.
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Conclusions Conclusions ---- DicambaDicamba

• Dicamba genotoxicity is less than oxamyl and about 
the same as 2,4-D.

• Reaction of dicamba with oxidized (unaltered) 
smectite clay has a slight enhancement effect on its 
genotoxicity.

• Reaction of dicamba with reduced smectite clay 
causes a significant increase in the genotoxicity of 
this pesticide.
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Mitigating Pesticide ToxicityMitigating Pesticide Toxicity

• The redox state of iron in smectite clay minerals has a 
large effect on the cyto- and genotoxicity of some 
pesticides.

• On the pesticides where an effect is observed, it may be 
positive or negative, depending on the pesticide.

• The toxicity of some pesticides is unaffected by the 
smectite.

• Evaluations of pesticide fate must include effects of 
redox-modified clays.



Current work in Professor Plewa’s laboratory is 
focussed on linking biological toxicological endpoints 
with alterations in gene expression in normal (non-
transformed) human cells (student Mark Rundell). 
This will be one of the next steps in our work with the 
clays. 
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Current work in Professor Plewa’s laboratory is 
focussed on linking biological toxicological endpoints 
with alterations in gene expression in normal (non-
transformed) human cells (student Mark Rundell). 
This will be one of the next steps in our work with the 
clays. Studies with bacteria altered clays are also 
needed.

Current & Future WorkCurrent & Future Work
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