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» Native of Rexburg, Idaho

 Father was a professor of agriculture at Ricks
College (now BYU-Idaho)

« Grew up on a dairy
 Attended college In Idaho, Utah, and Indiana
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Extra-curricular Activities — T e
Hiking, Horse-back Riding, and

Mountain Climbing in the Teton

Mountains on the Border between

Wyoming and Idaho.




The Grand Teton






The Grand Teton Summit




My Youngest Daughter
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PURDUE

Received Ph.D. in Physical Chemistry of Clays



Brief Biographical Sketch

» Native of Rexburg, Idaho

 Father was a professor of agriculture at Ricks
College (now BYU-Idaho)

« Grew up on a dairy
 Attended college In Idaho, Utah, and Indiana
e Came to UIUC as assistant professor in 1976
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Altgeld Hall (Mathematics)
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Morrow Plots — The U.S.’s Oldest Experimental Field
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Earth at Night Astronomy Picture of the Day
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+ Visited 40 Others

Earth at Night Astronomy Picture of the Day
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* Overview of Iron Reduction in Clays

e Effects of Reduction on Smectite Structure and
Iron Mineralogy
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* Overview of Iron Reduction in Clays
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Interactions



OUTLINE

* Overview of Iron Reduction in Clays

 Effects of Reduction on Clay-water & -organic
Interactions

« Application of Redox-treated Clays for the
Remediation of Pesticide Toxicity



Literature References

SEE HANDOUT
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Most Common Soil Minerals

 Silicates and Aluminosilicates

« Oxides and hydroxides of Fe, Al, and Mn
« Carbonates

« Sulfates



Most Common Soil Minerals

e Silicates and Aluminosilicates
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A Single Clay Layer
(2 um wide x 0.00096 um thick)

Drawing by Laibin Yan



The Silicon Tetrahedron

Ball and Stick Model Polyhedral Model

@ Ooxygen (2-)



The Aluminum Octahedron
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Polyhedral Model Close-packed Model
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Some of the Si** is sometimes replaced by Al or Ees*




The Aluminum Octahedron
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The Aluminum Octahedron
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The Aluminum Octahedron
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The Aluminum Octahedron
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The Aluminum Octahedron

.\ AI3V.
® | e

The Al®* can be partially or completely
replaced by Mo?*, Fe3*, or Fe?*
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Octahedra Join At Edges
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Octahedra Join At Edges

Octahedral Sheet






A Single Clay Layer
(2 um wide x 0.00096 um thick)

Drawing by Laibin Yan






The Layers Stack One Upon Another

Tetrahedral
Octahedral

Tetrahedral

M s o
Sit+, Fe®*, Al . B B B B
OH-, O%
AlF*, Mg#*, Fe3*

Drawing by Kangwon Lee






lron In the Octahedral Sheet Can Be
Reduced and Reoxidized

Tetrahedral
Octahedral

Tetrahedral

M+ L . (J

. o e e e e ‘@
Si4*, Fed*, AR+
OH-. 0%

AlF*, Mg#*, Fe3*

G—— (M ——————— )

Drawing by Kangwon Lee



Isomorphous Substitution in Clays

Cation | Replacement |Change in Charge
A" Fe’" 0
AP Mg> 1
Al Fe®' -1
Fe’" Fe*' -1
Sit" Al -1
Sit" Fe’* -1




Exchanged Cations Neutralize
Isomorphous Substitution

Tetrahedral
Octahedral

Tetrahedral

Mn+
0=
Si*, Fe3*, AP*
OH-, O
AlF*, Mg#*, Fe3*

Drawing by Kangwon Lee



The Interlayer Region Is A Rich Chemical
Environment

Tetrahedral
Octahedral

Tetrahedral

M+
02
Si*t, Fe3t, ARt
OH-, O
AlR*, Mg?*, Fes3*

Drawing by Kangwon Lee






Iron Reduction Has Large Effect on
Chemical Activity In the Interlayer

Tetrahedral
Octahedral

Tetrahedral

Mn+
0=
Si*, Fe3*, AP*
OH-. 0=
AlF*, Mg#*, Fe3*

Drawing by Kangwon Lee
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Drawing by Kangwon Lee
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In nature
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agent In nature



REDUCING AGENTS

Dithionite
Hydrazine
Sulfide
Hydrogen Gas
Hydroquinone

Nitrobenzene

Tetraphenylboron
Bacteria



REDUCING AGENTS

 Dithionite
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Visible Light Source
(Tungsten Lamp)

AE . =hv




Visible Light Source Sample
(Tungsten Lamp)

AEvis = hv I0




Visible Light Source Sample Detector

(Tungsten Lamp)
-
A Evis — hV | 0 |




Visible Light Source
(Tungsten Lamp)

AE . =hv



Iron-Pair Combination
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Iron-Pair Combination
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REDUCING AGENTS

Dithionite
Hydrazine
Sulfide

Hydrogen Gas
Hydroquinone
Nitrobenzene
Tetraphenylboron
Bacteria



Microorganisms Used (FeRB)

Indigenous Unclassified from SWa-1, paddy soill,
upland soil, and subsurface sediments

Pseudomonas fluroescens, aureofaciens, putida

Shewanella oneidensis (putrefaciens) MR-1 & CN32,

alga BrY

o-Proteobacteria

Geobacteraceae

Low-G+C gram-
positive bacteria

Bacillus, Desulfitobacterium,
Desulfotomaculum

Others

List Is open for expansion




Smectite Reduction by Bacteria*

* Schewanella putrefaciens (strain MR-1) (from Wu and Kostka)
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Summary of Observations

*The oxidation state of structural iron In clay minerals has a
profound effect on their physical, chemical, and colloidal
properties

-Commonly occurring bacteria are capable of reducing
structural iron in clay minerals

*Increases In clay layer charge are less than predicted by
levels of iron reduction

|ron reduction affects soil fertility by fixing K* and other
cations between clay layers
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Summary of Observations

*Reduced clay surfaces are more active with respect to
degradation of chloro- and nitro-organics

Surface pH and redox potential are altered by structural
Iron reduction

*The clay mineral layer exhibits frustrated anti-
ferromagnetic behavior in the oxidized state and
ferromagnetism in the reduced state

|ron reduction decreases specific surface area and clay
swelling in water
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Summary of Observations

*Ma0ssbauer spectra reveal that the pathway for electron
transfer into the clay structure upon chemical reduction may
be different from bacterial reduction

Pesticide degradation can be greatly affected by exposure to
reduced-clay surfaces

T he structure and stability of reduced clays are governed by
the extent of reduction, the reducing agent, and the presence
ofi organic acids
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Summary of Observations

*Redox-modified clay minerals have been characterized by:
»Mobssbauer spectroscopy
>FTIR
»EXAFS and Polarized EXAES
»UV-Visible spectroscopy
» Magnetic susceptibility
» |_-edge x-ray absorption spectroscopy
»> X-ray photoelectron spectroscopy
»High-resolution transmission electron microscopy



Iron Reduction Increases Layer Charge
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(from Lear and Stucki, 1985)



Cation Fixation by Reduced Clay

Oxid Red Oxid Red Oxid Red Oxid Red

Fixed
m CEC

K Ca N Cu




Potassium Fixation in Smectite
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Cation Fixation by Reduced Clay

Oxid Red Oxid Red Oxid Red Oxid Red
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Potential for Potassium Fixation

Acre 6-1n of Soll = 2 million Ibs.
Medium Texture Soil = 15% Clay

K fixation @ 20% Fe(ll) = 0.0047 Ibs K,O/lb. clay

0.0047 Ibs K,O x 101lbs.Clay x 2x10° Ibs. Soil
Ib. clay 100 Ibs soil Acre 6-In

Total Potential Fixation = 940 lbs K,O/Acre 6-In



Cation Hydration Energy (kJ/mol)

Smectite SWa-1 Reduced 4 Hr

2000 |- 12000

- Cu i

I Zn

- Ca i
1500 11500
1000 |- 11000
500 | 1500

| | | | K |
5 10 15 20 25 30

Cation Fixed (cmol/kg)



Interlayer K (meq/g)

25 L

Smectite SWa-1
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/ —@
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_________________ W — W
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K Fixation in Na- and K-Exchanged Reduced SWa-1

Fixed K (mmol/g)

30 1 30
20 1 20
10 1 10
0 0

Na K
Reduced with Exchangeable Cation



Reduced SWa-1

Oxidized SWa-1




TMPA C Content in Unaltered SWa-1
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82 .

80 F .

76 | :
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Effect of TMPA on Fixed K In Reduced SWa-1

Fixed K (cmol/Kg)

40
35
30
25
20
15
10

®
°
’ . ......................... . ................ . ................. .
A
0.0 0.2 0.4 0.6 0.8

Mole Fraction of TMPA In Solution



Effect of Glucosamine on K Fixation

1.4 - [ Exchangeable
Bz Fixed
1.2
+¥ 10 1
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@)
0.4 -
0.2 -
0.0
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K" Only K" Only Glucosamine

* Normalized to Unaltered Exchangeable C Iay T reatment






CEAGORCGANIC INTERACT [ONS

Joseph W. Stucki
University of Illinois



Pentachloroethane Transformation



Reductive dechlorination

+ 2e-

Pentachloroethane

Dehydrochlorination

Pentachloroethane

Trichloroethene

Tetrachloroethene




Rate of Pentachloroethane Transformation in NG-1

C (x10™° M)

10

T . i I I I I T 10
Oxidized Reduced
—e— 5CA
1 8
1 6
14
42
\ \ \ —® @®— @ @ O
100 200 300 100 200 300

time (min)
From Cervini-Silva et al., 2000, Clays Clay Miner. 48:132-138



Rate of Pentachloroethane Transformation in NG-1

10

C (x10™° M)

T . i I I I I I 10
Oxidized Reduced
—e— 5CA —e— 5CA
—a— 4CE —=— 4ACE 18
16
14
12
“m
\ \ I I ® O
100 200 . 300 _ 100 200 300
time (min)

From Cervini-Silva et al., 2000, Clays Clay Miner. 48:132-138



Rate of Pentachloroethane Transformation

10
—~ 8 r
N
=
E 6
S
@)
—
X 4 r
0
O
o)
~ _ 2 — |
2 y=168x+1.5764 r2=0.9818 - 2
u
OP | | | | O
0 1 2 3 4

Fe(ll) (mmol/g clay)

From Cervini-Silva et al., 2000, Clays Clay Miner. 48:132-138



Cl Cl
Ct J—c/\-- ----- o pentachloroethane

Q3 H \|—_6 Cl
o ) .
:0t reduced smectite acts
as a Bronsted base
O llllll H\ Cl Cl
ARVl tetrachloroethene
+ ClI~

From Cervini-Silva et al., 2000, Clays Clay Miner. 48:132-138



Atrazine Transformation



Structure of Atrazine
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Atrazine Reacted with SWa-1
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Atrazine Reacted with SWa-1
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Relative Intensity

HPLC of **C-Atrazine with Oxidized SWa-1
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Relative Intensity

HPLC of **C-Atrazine with Reduced SWa-1
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Alachlor Transformation



Structure of Alachlor
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Alachlor Reacted with SWa-1
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Trifluralin Transformation



Structure of Trifluralin
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Chloropicrin Transformation



Structure of Chloropicrin
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Chloropicrin Reaction Products
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Chloropicrin Reacted with SWa-1
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Chloropicrin Reaction Products
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CONCLUSIONS

* Reduction of structural Fe activates smectite
surfaces relative to organic compound
transformation.

* Degradation pathways include base-catalyzed
eliminations and reductive dehalogenation.

* Reduced smectite surfaces also contain significant
acidic sites due to increased population of
exchangeable cations.




Oxamyl Transformation



Structure of Oxamyl
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Oxamyl Reacted with Redox-Modified SWa-1
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Oxamyl Reacted with Redox-Modified SWa-1
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Oxamyl Reacted with Redox-Modified SWa-1
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Oxamyl Structure
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Hydrolysis of Oxamy!l
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Reduction of Oxamyl

CH, CH,
I I
/N @) 2+ /N @)
H,C :/E Fe H,C \E
CH, O N DMCF
3 Y CH, C
O +
Oxamyl -
/,{l\s + CH,SH + CO,
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DMCF = N, N-dimethyl-1-cyanoformamide




pH vs. Oxidation State of SWa-1
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pH vs. Oxidation State of SWa-1
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Summary

» Oxidized clay: no change in clay pH; no oxamyl
degradation at low pH (3.5); some at neutral pH (7.0).

e Chemically reduced clay:
— Clay pH 1increases as structural Fe(II) increases;

— Oxamy] 1s partially degraded into OO (mostly) and DMCF
at low pH;

— Oxamyl degrades completely into OO at neutral pH;



Concluslors

« Oxamyl degrades rapidly in the presence of
reduced smectite.

« Oxamyl oxime (hydrolyis) product dominates in
reduced SWa-1 at higher pHs.

 DMCEF (reduction) product occurs only at low
PH.



Mitigating Pesticide Toxicity

Objective:

Determine ways to mitigate the human
toxicity of pesticides in the environment
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The Team:

Kara C. Sorensen: Ph.D. Student

Richard E. Warner -- wildlife ecologist

‘Michael J. Plewa -- geneticist and
toxicologist

Joseph W. Stucki -- clay chemist




Mitigating Pesticide Toxicity

Studied Four Pesticides:

Alachlor, 2,4-D, Dicamba, Oxamyl

Measured:

Cytotoxicity & Genotoxicity



Mitigating Pesticide Toxicity

Cells Representing Human Cells:

Chinese Hamster Ovary Cells (CHO)

Clay Used Was lron Smectite
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Mitigating Pesticide Toxicity

Objective:

Determine ways to mitigate the human
toxicity of pesticides in the environment
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Cyiotoxiclty Metrnod

* Solutions containing pesticide were separated from the
solid clay fraction by centrifugation.



Cytotoxicity Method

* Solutions containing pesticide were separated from the
solid clay fraction by centrifugation.

 In order to avoid collateral damage to CHO cells due to
ancillary reactions, solutions were filter sterilized and the
pH and 1onic strength were carefully controlled under an
inert atmosphere.



Cytotoxicity Method

* Solutions containing pesticide were separated from the
solid clay fraction by centrifugation.

 In order to avoid collatoral damage to CHO cells due to
ancillary reactions, solutions were filter sterilized and the
pH and 1onic strength were carefully controlled under an
inert atmosphere.

» The fraction of surviving cells after treatment with
pesticide solutions was measured by live-cell density, using
visible absorption spectroscopy at 450 nm after live-cell
fixation with crystal violet.



Alachlor Transformation
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Conclusions -- Alachlor

» Alachlor evokes a cytotoxic response in the CHO cells.

 Prior reaction of alachlor with oxidized (unaltered)
smectite clay has no effect on cytotoxicity of the
pesticide.

* Reaction of alachlor with reduced smectite clay has a
small, but statistically significant effect on decreasing
its cytotoxicity.



Oxamyl Transformation
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Conclusions -- Oxamyl

* Oxamyl evokes a cytotoxic response 1n the CHO cells.

* Prior reaction of oxamyl with oxidized (unaltered)
smectite clay has no effect on cytotoxicity of the
pesticide.

* Reaction of oxamyl with reduced smectite clay
mitigates a large fraction of its cytotoxicity.



2,4-D Transformation
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Conclusions — 2,4-D)

» 2,4-D evokes a cytotoxic response in the CHO cells.

 Prior reaction of 2,4-D with either oxidized (unaltered)
or reduced smectite clay has no effect on cytotoxicity of
this pesticide.



Dicamba Transformation



Toxicity to Mammalian Cells ———=

?

@® With Reduced SWa-1
B With Oxidized SWa-1

O Without clay

60 -

_
o o
o)

(3SF) |013U0D aAIeBaN BU) JO 9 B SE
Aisuaq |19D uesN-AN0IX0101A0 OHO

3000

2000

Dicamba (uM)

1000



Toxicity to Mammalian Cells ———

I

mehﬁ-i

® \With Reduced SWa-1
B With Oxidized SWa-1

O Without clay

40

_ _
r 2 :
o) O

—

(3S7) |01U0D BAITRBBN 8y} JO 9 B Se
Ausuaq (180 ues|N-A101X01014D OHO

20

3000

2000

Dicamba (uM)

1000



Toxicity to Mammalian Cells ———=

® \With Reduced SWa-1
B With Oxidized SWa-1

O Without clay

40

_
o
O

80

(3SF) 101U0D BANRBAN 8U) JO 9% e Se
Aisuaq |80 ues|N-A1191X0101A0 OHO

20

3000

2000

Dicamba (uM)

1000



Conclusions -- Dicamba

» Dicamba evokes a cytotoxic response in the CHO cells.

* Prior reaction of dicamba with oxidized (unaltered)
smectite clay has little effect on cytotoxicity of the
pesticide.

» Reaction of dicamba with reduced smectite clay
actually enhances 1ts cytotoxicity to CHO cells.
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Genotoxicity Method

e DNA was stained with ethidium bromide then submitted to
Single-cell Gel Electrophoresis.



Cenotoxlclty Meinod

e DNA was stained with ethidium bromide then submitted to
Single-cell Gel Electrophoresis.

* A fluorescence microscope was used to digitize and record
images of DNA 1n a CCD camera.



Genotoxicity Method

e DNA was stained with ethidium bromide then submitted to
Single-cell Gel Electrophoresis.

* A fluorescence microscope was used to digitize and record
images of DNA 1n a CCD camera.

* Damaged DNA migrated away from the nucleus, creating a
tail in the medium — like a comet.
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Genotoxicity Method

DNA was stained with ethidium bromide then submitted to
Single-cell Gel Electrophoresis.

A fluorescence microscope was used to digitize and record
images of DNA 1n a CCD camera.

Damaged DNA migrated away from the nucleus, creating a
tail in the medium — like a comet.

Extent of damage was recorded as % tail of a concurrent
positive control using (EMS).



Cenotoxlclty Meinod

DNA was stained with ethidium bromide then submitted to
Single-cell Gel Electrophoresis.

A fluorescence microscope was used to digitize and record
images of DNA 1n a CCD camera.

Damaged DNA migrated away from the nucleus, creating a
tail in the medium — like a comet.

Extent of damage was recorded as % tail of a concurrent
positive control using (EMS).

Level of exposure to pesticide was in the range where
cytotoxicity was low.
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Conclusions -- Oxamyl

* To our knowledge this is the first report that the
pesticide oxamyl manifests genotoxic properties.

« Reaction of oxamyl with oxidized (unaltered)

smectite clay has no effect on genotoxicity of the
pesticide.

« Reaction of oxamyl with reduced smectite clay
mitigates a large fraction of its genotoxicity.
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Conclusions -- 2.4-D

» 2,4-D genotoxicity Is less than oxamyl and about the
same as dicamba.



Conclusions -- 2.4-D

» 2,4-D genotoxicity Is less than oxamyl and about the
same as dicamba.

* |ts genotoxicity iIs unaffected by either oxidized
(unaltered) or reduced smectite clay
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Conclusions -- Dicamba

« Dicamba genotoxicity Is less than oxamyl and about
the same as 2,4-D.

« Reaction of dicamba with oxidized (unaltered)
smectite clay has a slight enhancement effect on Its

genotoxicity.
» Reaction of dicamba with reduced smectite clay

causes a significant increase In the genotoxicity of
this pesticide.
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Mitigating Pesticide Toxicity

The redox state of iron in smectite clay minerals has a
large effect on the cyto- and genotoxicity of some
pesticides.

On the pesticides where an effect Is observed, it may be
positive or negative, depending on the pesticide.

The toxicity of some pesticides Is unaffected by the
smectite.

Evaluations of pesticide fate must include effects of
redox-modified clays.



Current & Future Work

Current work in Professor Plewa’s laboratory is
focussed on linking biological toxicological endpoints
with alterations in gene expression in normal (non-
transformed) human cells (student Mark Rundell).
This will be one of the next steps in our work with the

clays.



Current & Future Work

Current work in Professor Plewa’s laboratory is
focussed on linking biological toxicological endpoints
with alterations in gene expression in normal (non-
transformed) human cells (student Mark Rundell).
This will be one of the next steps in our work with the
clays. Studies with bacteria altered clays are also
needed.
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